
AD-A253 917 DTICIl~l~lI| SELECTE.
JULI5 1992A f

PL-TR-92 -2084 C U

AN ACCURATE AND EFFICIENT METHOD TO CALCULATE THE
RATE OF SINGLE EVENT UPSETS FROM THE LET SPECTRUM
AND SEU CROSS SECTION TEST RESULTS

D. L. Chenette
T. L Schumaker
A. E. Williamson

Lockheed Palo Alto Research Laboratory
Space Sciences Laboratory 0/91-20, B/255
Palo Alto, CA 94304-1191

20 March 1992

Scientific Report No. I

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLINITED

PHILLIPS LABORATORY
HAMSCOK AIR FORCE BASE, NASSACHUSETTS 01731-5000

92-18394

t2!8 i lll

"This technical report has been reviewed and is approved for publication"

KEVIN P. RAY, LT, Us 3. G. MULLEFN
Contrct Mnage 7 Branch Chief

Z WILLIAM SWIV
Deputy Director

This document has been reviewed by the ESD Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical
Information Center. All others should apply to the National Technical
Information Service.

If your address has changed, or if you wish to be removed from the mailing list,
or if the addressee is no longer employed by your organization, please notify
PL/TSI, Hanscom APB, MA 01731. This will assist us in maintaining a current
mailing list.

Do not return copies of this report unless contractual obligations or notices on
a specific document requires that it be returned.

.OCUMENTATION PAGE

i:0= IN m.oil Bi
*4wingl*wa lw . am .uioiU'. at e

f. AGENCY 095 ONY (Leave bla) 2. UPOST DATfE RPrT Y AmD SAM COME, I 3-20/92, Scientific #1

4. W" AND WVUSIL AN ACCURATE AND EFFICIEN~T HE TO~ F5NUSN PAD" E

CALCULATE THE RATE OF SINGLE EVENT UPSETS FROM THE LET F19628-90-C-0101

SPECTRUM AND SEU CROSS SECTION TEST RESULTS PE 62101F
PR 7601 TA22 WULB

C -AUTNHS)

D. L. Chenette. T. L. Schumaker, and A. E. Williamson

7.PEOIG SSMATMO KAMMS AND AMIRSS(ISJ 6 PEIFN OAGANSZATO

Lockheed Palo Alto Research Laboratory OT

Space Sciences Laboratory, 0/91-20 B/255

3251 Hanover Street

Palo Alto, CA 94304-1191

0. SPNO" ITORING AGENC NAME S) AND AORESS 14L0. SOOUIN/ONIOR0*
AGENCY REPORT NUMER

Phillips Laboratory
Hanscom AFB, MA 01731-5000

Contract Manager: Kevin P. Ray, Lt., USAF/GPSP PL-TR-92-2084

11. - wARY N0TES

12. f-m"Ul'ON/AVAX.A1NL/TY STATEMENT 12b. DSSTRUTIOU Cm

Approved for public release;

Distribution unlimited

13. AGSTVACT (i 2...0.W..

A specific implementation is presented for calculating the rate of single event

upsets in microelectronic devices. The implementation is based on the method

of Pickel and Blandford (1980), who combined device test results, the flux

distribution of particles in the space environment, and a model for the

geometry of the device. The device test data are summarized as an upset cross

section expressed as a function of the linear energy transfer (LET). The

flux distribution of particles in the environment is described by an integral

LET spectrum. The device geometry model is that of a solid rectangular prism.

A numerical integration of the LET spectrum and path length distribution in the

solid over the upset cross section is performed to obtain the resultant upset rate.

42

Sinle event upset, radiation effects,
microelectronics

2 COD

17. S00" COASSPIATIU L -#&- MI a.ASSWICATI I L a3 UPIWIT 3PWCAW NA2$VI5
or I &T PASS OP

unclassified unclassified unclassified SAIR

"W or "M "t M

Contents

Introduction 1

Methods and procedures 1

LET spectrum 1

Path length distribution 2

Device geometry 2

Total upset rate 3

Integrating detailed upset cross sections 3

Application of the method 6

References 8

Appendix A: SEUCALC and related subroutines 9

Source code organization 9

Subroutine descriptions 10

Input and output file descriptions 12

Appendix B: Sample LETSPECTRUM input file 15

Appendix C: Sample DEVICE input file 17

Appendix D: Sample SEUCALC output file 19

Appendix E: Source code listings 21

~Aoessi~a For

NTIS ga~hl4
3'IC f s 0
1. ,amounted 0

Juistrti fot

AvAtlebtIlttyCoe
Awii i--- i~tor_ J

;Dist Special

List of Figures and Tables

Fur 1: us umd wgl evert ups cross sections for the 931422 RAM

Figure 2: Stop w rodmetions to the upsel cross section

iv

List of Symbols, Abbreviations, and Acronyms

AMD Advanced Micro Devices
CRRES Combined Release and Radiation Effects Satellite
LET Linear energy transfer
RAM Random access memory

SEU Single event upset

V

Introduction

The goal of the effort reported here is to provide a convenient, efficient,
and accurate method to estimate the rate of single event upsets for devices in
the space environment during the various phases of the CRRES mission. This
calculation integrates results from the CRRES cosmic ray model, results from
ground tests of device upset susceptibility, approximate device geometry
models, and device shielding estimates to obtain the upset rate. The method
provides upper and lower limit estimates of the upset rate from different
integrations of the upset cross-section test results. These limits provide some
indication of the precision of the result and its sensitivity to the quality of the
device test data.

This report provides an overall description of the approach, a detailed
description of the specific method adopted, and full documentation of the
software implementation of that method.

Methods and Procedures

The method chosen to calculate the SEU rate is similar to that described
by Picket and Blandford (1980). It is a direct application of a few simple
geometrical concepts.

The upset rate is determined as the rate at which energetic heavy ions in
the space radiation environment can deposit more than a certain minimum
amount of energy Into a specific volume. The minimum energy deposit required
to cause an upset is called the upset threshold. The specific volume is the
sensitive volume of a cell In the device. The particle rate is determined from the
product of the local particle flux (per unit time per unit solid angle and per unit
area) and the geometrical factor presented by the sensitive volume (solid angle,
area product).

The requirement to deposit more than a certain minimum amount of
energy Into a specific volume restricts the calculation. It leads to a specific
method to organize the particle flux distribution and a specific method to
describe the geometry of the sensitive region. This modified description of the
particle flux distribution is called the linear energy transfer (LET) spectrum. The
modified description of the geometry of the sensitive region is called the path
length distribution.

LET spectrum The linear energy transfer (LET) of an energetic heavy ion, the
energy loss per unit distance travelled in a material, generally increases with
the atomic number of the ion (Z) and generally decreases with increasing
velocity (except at low and high velocities where atomic effects and relativistic
effects, respectively, become important). Thus a fast iron ion and a slower
oxygen ion can have the same LET and, by assumption, the same ability to

produce a single event upset In a specific device. The LET spectrum Is a
convenient way to Integrate and keep track of the contributions of various ions
ordeved accrl to LET. The Integral LET spectrum used here is reported as a
product of the CRRES Cosmic Ray Model Group. It represents the total flux of
particles of all types with an LET larger than some threshold (L). This is written
as F(L).

Poth es distribtion The energy deposited by a particle with LET Lo
along path I is ED - Lo*. Thus the other information needed to establish the
energy deposited by an ion penetrating a region is the length of the chord
through the region () representing the track of the Ion.

Viewed from an arbitrary direction, any solid presents a distribution of
chord lengths or projected thicknesses, over its projected area. This is the
unidirectional path length distribution through the solid. It has a simple
inepretation but can be rather complicated to express mathematically.

For any solid at an arbitrary orientation, there is an area, solid angle
product (geomtrical fact.N) presented by the solid for a given path length. In the
present work, since the region of interest has an arbitrary orientation in space,
the path length distribution is computed as the average over all orientations.
The path length distribution is wrllen P(I). It is zero for path lengths longer than
the maximum chord through the volume (Imax). For the work reported here, the
distribution Is normalized so that the Integral over all path lengths is equal to the
total geomeftical factor of the solid. For many types of solid prisms this is x times
the surface area of each face of the solid. For a right rectangular solid prism with
dimensions x,yz the path length distribution is written as P(I;x,y,z) and the
normalization condition is:

"Pplx,y,z) d - 2x(xy + xz + yz)

Jo (1)

The maximum path length is given by:

Imax 0 -x 2 + y2 + Z2 (2)

The form of the function PO is provided by Pickel and Blandford (1980),
although they choose to use a different normalization than presented here.

Device geometry Single-event upset susceptibility tests of microelectronic
deces are often characterized by two parameters: a cross-sectional area of the
device which is sensitive to upset, and a threshold value of the LET necessary
to induce an upset (ref.) In the simplest idealization of the test results, the upset
cross-section is zero below some threshold LET value, Lc, and a constant equal
to some area, Au, above this threshold.

The upset cross-section resultt yield to a simple geometric interpretation
which has been validated by continuing device tests and analyses. The
sensitive region of any cell, or bit of RAM, is often modelled as a rectangular
sid section of the silicon chip. This section has a thickness (z) and some

2

surface area (x'y). The geometric interpretation of the total sensitive area
measured in the SEU tests is clear: For a device with N cells (e.g. N bits in a
RAM) the total sensitive area of the device is Au = N*x*y. Thus, a measurement
of the upset cross section together with a knowledge of the number of bits (N)
yields an estimate of the sensitive cell area (x-y). The individual dimensions (x
and y) can often be obtained with sufficient accuracy just as the square root of
that area. More precise estimates are rarely required or justified. They must
come from details of the manufacture of the device or from physical analysis of
the structure.

The upset threshold value of the LET (Lc) multiplied by the thickness of
the region (z) is interpreted as a minimum energy or charge deposit necessary
to change the state of the device, Ec = z*Lc. (For silicon, this energy deposit or
charge deposit are proportional to each other. The constant of proportionality is
3.6 eV/electron.) The thickness (z) is not generally known with great precision. It
depends on parameters associated with the device technology and wafer
processing. Fortunately, since both the test results and the real spectrum are
expressed in terms of the LET, an imprecise knowledge of the depth (z) has little
effect on the precision of the result. This has been demonstrated by detailed
calculation (Shoga, et al., 1988).

Total upset rate The total upset rate (U) for the simple model outlined above
is given by the following expression:

U -- F(Ec / I) P(I;x,y,z) dl

The Integral is performed over the entire path length distribution. However, for
any path length, I, only particles with LET above the threshold L = Ec / I
contribute to the upset rate. Because the LET spectrum and the path length
distribution are not simple analytic functions, the integral is generally computed
numerically.

Integrating Detailed Upset Cross-Sections

The relatively simple integral described in the previous section is
appropriate in the idealized situation where the measured upset cross section is
a step function, equal to zero below some threshold value of the LET and equal
to a constant value above it. The situation becomes slightly more complicated In
the real world. In this section other shapes for the upset cross-section are
addressed.

The upset cross-section measurements are rarely step-functions. More
often, there is a transition region of LET where the cross-section rises from zero
to some asymptotic value (Figure 1). This behavior has been discussed
extensively in the literature and various explanations offered. For our purposes,
however, we choose to adopt another simple concept to understand this effect.

3

This concept also motivates and justifies our method to incorporate the effect
Into the calculation.

J 1 93L422 Ground Test Results

.01

.001

K Fairchild
* AMD

.0001

=).00001.
.1 1 10 100

Effective LET (MeV/mg/cm2)

Figure 1: Measured single event upset cross sections for the 93L422 RAM

The concept to apply to the variation in upset cross-section with LET is to
treat the ratio of the upset cross-section to its asymptotic value as an upset
'"effectiveness" or "efficiency". To accomplish this the upset cross section is
divided by the area factor (x'y). At low values of the LET the efficiency for upset
in the sensitive region is low. As the LET increases, the efficiency also
Increases. As the LET is increased still more an asymptotic cross section is
established which defines the area sensitive to the SEU process. The upset
cross-section divided by its asymptotic value is an efficiency in the range from 0
to 1. The area factor (x'y) is retained through the path length distribution
normalization as in the discussion above.

In applying this concept to the integral necessary to calculate the SEU
rate, the cross-section, renormalized as an efficiency, can be treated as a sum
of step functions in the LET (h(L)) with amplitude si at location Li:

e(L) = ((L) - , [sih(Li) - si.lh(Lj)]xy (4)

The subtraction Is necessary to remove the contribution of one step function
from the region to the right of the next. AN of the values si are in the range from 0
to 1 and monotonically increasing with increasing Li. The sequence of values si
and Li can be chosen in many ways to approximate the shape of the upset cross

4

section. Lower and upper limit estimates can be chosen and refined at will. An
example is Illustrated in Figure 2.

Lower Limit

Uf)
2
C

Upper Limit

0 s! ...

.2 -

0

C

Li.1 Li LET

Figure 2: Step function approximations to the upset cross section

With this formulation of the measured upset cross section, the complete
formula for the upset rate becomes:

' (si - si1 F(z Li / I) P(I;x,y,z) dl
f (5)

The factor z*U is the critical energy deposit threshold for each step function
piece. This completes the presentation of the method.

5

Application of the method

Software to implement the method described in the previous section has
been developed. A detailed description of the subroutines and listings of the
source code are presented in the appendices. Some practical considerations
for the use of this software are provided in this section.

Following the discussion above, there are four major components in the
calculation. Each of these components must be provided. Most of them are input
parameters or input data files. The major components are:

1. An estimate of the dimensions of the device cell which is sensitive to
upset, modelled as a rectangular solid prism, and the number of sensitive
regions in the device. The dimensions are labelled x, y, and z. By convention,
the z dimension is normal to the face of the chip die. The area A = x*y is the
maximum total sensitive area of a unit cell (the sensitive area corresponding to
a bit in a RAM, for example). N is the number of unit cells in the device. (The
number of bits, for example.) The quantity N*x*y should be equal to the
asymptotic value of the upset cross section (part 3, below).

2. The distribution of path lengths through the sensitive region, P(I). The
model provided in the code is for that of a solid rectangular prism.

3. The upset cross-section of the device as a function of LET, a(L). The
cross-section is obtained from ground tests. Physically, to be consistent with the
assumptions of the model, the upset cross section must be monotonically
increasing with increasing LET. Often the test data are not monotonic (c.f. Figure
2). This Is attributed to imperfections in the test results and the scatter around a
smooth monotonic curve can be used as an estimate of the standard deviation
of the test data set. The data set which is to be used in this software must be
smoothed (by hand, if necessary) so that it is monotonic.

4. The flux of particles in the radiation environment as a function of LET,
F(L). This distribution is provided as one of the products of the CRRES Cosmic
Ray Model, calculated from models and/or measurements of the abundances
and energy spectra of the energetic heavy ions in the cosmic rays. It is
calcula d for a variety of assumptions for the thickness of shielding between
the environment and the sensitive region of the device. The LET spectrum for
the proper epoch and for the proper thickness of passive shielding must be
selected to obtain accurate upset rate estimates.

For each run, the upset rate is calculated three times, once each for a
lower Omit, an upper limit, and a central estimate. All of these estimates are
controlled through the input cross section data file. Both upper and lower limits
are defined with respect to the LET and cross section values provided in the file.
In this calculation of the SEU rate, the step functions used for the lower and
upper limit estimates are placed at the values of the LET which are provided in
the Input file. The lower limit model uses the cross section listed in the file at
each LET. This yields a lower limit estimate as indicated by inspection of Figure
2. The upper limit model uses the cross section provided in the input file at the

6

next higher value of the LET. This yields an upper limit estimate, again, as is
clear from inspection of Figure 2. The central estimate is obtained by a 20-point
linear interpolation of the listed cross section vs LET values. The effects of
various uncertainties in the measured cross sections can be investigated by
modifying the cross section data file. Different runs can be made with fewer
entries in the cross section table or with the additional cross section values
obtained by any of a variety of user-generated interpolation schemes.

Additional details of specific data formats and the mechanics of using the
code are given in the appendices.

7

References

Kolasinl, W.A., R. Koga, and D.L. Chenette, "Heavy ion induced single event
upsets In a bipolar logic device", IEEE Transacions on Nuclear Science,
NS-30 4470, 1983.

Piokol, James C. and James T. Blandford, Jr., "Cosmic-ray-induced errors in
MOS devices", IEEE Transactions on Nuclear Science, NS-27, 1006,
1980.

Press, William H., Brain P. Flannery, Saul A. Teukoisky, and William T.
Vettering, Numerical Recipies in C, Cambridge University Press,
Cambridge, UK, 133, 1988.

Shoga, M., P. Adams, D.L. Chenette, R. Koga, and E.C. Smith, "Verification of
single event upset rate estimation methods with on-orbit observationso,
IEEE Transactions on Nuclear Science, NS-34, 1256, 1987.

8

Appendix A

CRRES Cosmic Ray Model
Single Event Upset Rate Calculator

SEUCALC and related support subroutines

Source code organization and layout

All of the source code is written in ANSI C. The source code is contained
in three files named SEU_CALC.C, PATHDIST.C, and INPLIST.C. All of the
source code is in the public domain. The subroutines contained in each file are
listed below:

SEUCALC.C
maino
integrand0
myflux()
Igauss()
do_int0

PATHDIST.C
pldset0
pldt()pld(0

INPLIST.C
input.list0

9

Subroutine descriptions

A brief description of the purpose served by each subroutine is provided
here together with the relationships between them and calling sequences.

Subroutine name: mainO
Calling sequence: None, entry point for SEUCALC
Returned value: None
Description: main() is the entry point for the SEU CALC package.

It opens the output file, handles the user interactions, writes the
documentation of the run, handles units conversions, and calls the
other routines in order as required.

Subroutine name: integrand()
Calling sequence: double integrand(double I), where I is a path length

In microns through the sensitive volume of the device
Returned value: a double-precision value of the Integrand for path

length I given the path length distribution, the LET spectrum, and a
critical charge threshold

Description: Given a path length distribution p(l), a critical charge
threshold Q, and an LET spectrum F(L), integrand(l) returns the
number of particles per second capable of depositing more than 0
in path length I as pQ)*F(L-OI)

Subroutine name: myflux()
Calling sequence: double myflux(double L), where L is an LET

threshold in units of picocoulombs per micron
Returned value: a double-precision value of the integral flux with LET

greater than L F(L)
Description: Given the tabulation of the LET spectrum, myflux(L)

returns the interpolated value of the spectrum at LET=L. If L<O or L
Is greater than the largest value in the tabulation, the flux retumed
is zero.

Subroutine name: Igauss0
Calling sequence: double lgauss(double a, double b)
Returned value: a double-precision value of the integral of integrand0

(above) from a to b
Description: Igauss does a ten-point Gauss-Legendre integration

based on Press, etal. (1988).

Subroutk name: dojint0
Calling sequence: int do int(double Acc, double min, double max,

double "ras, double "old)
Rtumed value: an integer number of integration subdivisions used

as well as the current best (*res) and previous (*old) integrals
DelOwIP:ll do nto integrates the value of integrand0 (above)

from min to max. The number of subdivisions of the integration is

10

increased until two successive results (al and a2) agree to within
less than Acc*a2. The Integral is first performed with a 20-point
trapezoidal rule. Then it is repeated using Gauss-Legendre
Intregrals over smaller and smaller divisions of the range of
integration until convergence to the required accuracy is achieved.

Subroutine name: pldset0
Calling sequence: double pldset(double x, double y, double z)
Returned value: a double value number equal to the maximum path

length through the sensitive region
Description: pldset0 tabulates the path length distribution for a

right rectangular solid prism as calculated by pdo. This is done to
speed up the calculation. The path length distribution is tabulated
at 1000 points between the minimum and maximum. When values
are required later they can be obtained by simple interpolation.

Subroutine name: pldt0
Calling sequence: double pldt(double s)
Returned value: the double value of the path length distribution at

path length s
Description: pidt() interpolates the tabulation made by pldset0

Subroutine name: pld(
Calling sequence: double pldt(double s, double x, double y, double z)
Returned value: the double value of the path length distribution at

path length s for a right rectangular solid of dimension x,y,z
Description: pld0 Implements the formula in the appendix of

Pickel and Blandford (1980). pd() uses a different normalization
than do Pickel and Blandford, however. In pld0 the path length
distribution Is normalized such that the result returned Is the
geometrical factor of the right rectangular solid prism for chords of
length s. The units of this result are area * steradians with the area
as the square of the units in which x,y,z, and s are presented. The
integral of pld0 over all values of s is equal to the total geometry
factor of the solid, which is equal to pi times the sum of the areas of
the six faces.

Subroutine name: inputlist0
Calling sequence: int lnputjlist(char *file, char *key, int max, double *cl,

double *c2, char *title)
Returned value: the number of items retrieved from the file
Description: inputjist0 reads the key-based input data files

needed by the program. The file name is contained in the *file
string and the selection key in the *key string. The 'title string is
used to return the comment following the key (if maxn is non-zero).
If maxn is zero then the value returned in *ci is the numerical
value Immediately following the key. Otherwise max defines the
maximum number of pairs of entries to be returned from the table.
c1 and c2 should point to double arrays that are at least max long.

11

The values read from the table columns in the Input file are
returned In c1, for the first column, and in c2 for the second
column.

Input and output file descriptions

Two file of Input data are required to perform the SEU rate calculation:
an LET spectrum file (LETSPECTRUM), and a device cross-section file
(DEVICE). Both files are text files with the necessary information presented
following key strings or In a tabular, columnar format. The contents and the
format mreoirements and restrctions for these files are described here. In
addition to writing to the user terminal or console screen, the program also
wuits Its, ouput to a file to provlde a permanent record of the run.

e f en" descriptive text, a key string of
chMersb and numbers. Un are delimited by either a new-line character or
by an end of file. The values may be In any floating-point format recognized by
the ANSI C atofO function. The values found In the Input files as Interpreted by
the pro&sm are written to the output file. When first using a new input DEVICE
or LT ,SPECTRUM file, the output should be carefully checked to ensure that
the In.erpetation of the data Is correct and complete.

Ths f must be named or (in VMS, for example) defined or assigned to
the name LET_SPECTRUM. The key string is the three-character string "LET".
Any number of lines of text may begin the file as long as the sequence "LET is
not present. The first line containing "LET" is assumed to be a comment line and
Is copled to the output as partial documentation of the run. Following this
comment One must be a series of lines containing two values per line as in a
two-column tabular form. This series of values is the tabulation of the LET
m-1-. The first value on each line must be the LET in units of MeV/micron.

second value must be the integral flux corresponding to that value of the
LET In units of particles per square meter per steradain per secnd. A maximum
of 90X entries in the LET spectrum table is supported at present. This number
can be changed by changing the value of NUMSPC and re-compiing. A
sample LET spectrum file Is provided as Appendix B.

Thistmut 10 med or (in VMS, for example) defined or assigned to
the name DEVICE. There are five sets of key strings which must appear In the
fe. The first fou key strings are the two-charaCter sequences: "X,,", "Ym,, "Z-t,
and Nb. The last key Is the three-character string "LET'. The "X,", "Y", "Z',

d "N0 key strings must each be followed Immediately (except for optional

12

blank spaces and tabs) by a numeric value. This value is interpreted and
assigned to the respective variable.

The first three keys describe the physical characteristics of the device
and its sensitive volume. X, Y. and Z are the dimensions of the sensitive region
cell In microns. The Z dimension is assumed to correspond to depth In the
silicon. The quantity X*Y is the sensitive surface area of the cell.

The number of sensitive volumes in the device cross-section table is
defined by the value of N. If the cross-section is tabulated per bit, N should be
set to 1.

Any number of lines of text may begin the file (these should include the
X, Y-, "Z-, and "N-" key strings) as long as the sequence "LET is not

present. The first line containing "LET is assumed to be a comment line and is
copied to the output as partial documentation of the run. Following this comment
line must be a series of ines containing two values per line as in a two-column
tabular form. This is the tabulation of the device upset cross-section. The first
value on each line must be the LET in units of MeV per milligram per square
centimeter. The second value must be the device upset cross-section
corresponding to that value of the LET in units of square centimeters per device
(or square centimeters per bit If the number of bits is set to 1, above). A
maximum of 50 entries in the device upset cross-section table is supported at
present. This number can be changed by changing the value of NUMXST and
re-compiling. A sample device upset cross-section file is provided as Appendix
C.

aQnut Is deseriMn:
One output file is generated whenever SEU_CALC is run. It is named

SEU_CALC. The output file provides a version number of the program, the
user-selected convergence parameter, documentation of all of the data used in
the calculation as read from the LET_SPECTRUM and DEVICE input files, and
the results of the integration. A sample output file is provided as Appendix D, for
a run using the input files of Appendices B and C.

13

Apprix B: Sample LET-SPECTRUM input file

LET (MeV/micron) Flux (/m2 s sr) "LEASAT 1" spectrum

(1.00OOe-02 , 2.1972e+O1
4 1.3388e-02 , 1.8184e+O1
{ 1.7925e-02 , 1.4426e+O1
{ 2.3998e-02 , 1.1121e+O1
(3.2129e-02 , 8.0889e+00
{ 4.3015e-02 , 5.9511e+00 1,
4 5.7590e-02 , 4.3873e+00
4 7.7103e-02 , 3.1657e+00
1 l.0323e-01 , 2.2608e+00 },

4 1.3820e-01 , 1.6468e+00 1,
1.8503e-01 , 1.1756e+00

4 2.4773e-01 , 7.7379e-01 1,
{ 3.3166e-01 , 4.0817e-01
{ 4.4404e-01 , 1.9998e-01 1,
{ 5.9449e-01 , 1.0080e-01 },
7.9592e-01 , 5.1504e-02

{ 1.0656e+00 , 2.6613e-02
4 1.4267e+00 , 1.3688e-02 1,
1 1.9100e+00 , 6.8406e-03

4 2.5572e+00 , 3.4166e-03
{ 3.4237e+00 , 1.5384e-03 },
4 4.5837e+00 , 6.7240e-04
4 6.1368e+00 , 1.3942e-04 },
8.2161e+00 , 5.6336e-08 },

{ 1.1000e+O1 , 0.0

15

Appendix C: Sample DEVICE Input file

This is for the 93L422 RAM
X-39 Y-39 Z-1
N- 1024

/* Upset cross-section data table.
The example given here is the measured
upset cross section for an AMD 93L422 RAM
tested 22 May 1987 at LBL 88"cyclotron.

LET (MeV/mg/cm2) Cross-Section (cm2/device) *1
4 0.1 , 0.0

0.5 , 1.00e-4 },
1.0 , 3.23e-3 },
1.4 , 4.34e-3 },

{ 3.0 5.77e-3 1,
4.2 , 7.20e-3 },
5.5 , 8.73e-3 },

4 8.2 , 1.OOe-2 1,
4 9.6 , 1.12e-2 },

15. , 1.18e-2 },
(21. , 1.24e-2 },
4 30. , 1.30e-2 },
4 35. , 1.39e-2 },

42. , 1.48e-2
I;

17

Appendix D: Sample SEQ.CALC output file

The input files used in this run were those fisted in Appendix B and C. The user
selected the olow" convergnce condition by entering "l " at the prompt. The
output from the SEU..CALC output file follows. To the screen the program writes
some additional intermediate results. One purpose of this is to help assure the
user that the program is still executing.

SEU rate calculator - 1-D integration method
Integral over experimental cross-section data.
Version 1.0 D.L. Chenette 8 November 1991

Convergence parameter - 1. Integration consistency - 0.1

LET spectrum used in this run:
LET (Hey/micron) Flux (/m2 s sr) "LEASAT 1" spectrum

LET (1eV/micron) Flux (/m2 s sr)
1 .OOOOe-02 2. 1972e+O1
1. 3388e-02 1 .8184e+01
1.7925e-02 1.4426e+01
2.3998e-02 1.1121e+01
3.2129e-02 8.0889e+00
4.3015e-02 5.9511e+00
5.7590e-02 4.3873e+00
7.7103e-02 3.1657e+00
1. 0323e-01 2. 2608e+00
1.3820e-01 1.6468e+00
1.8503e-01 1.1756e+00
2.4773e-01 7.7379e-01
3.3166e-01 4.0817e-01
4.4404e-01 1.9998e-01
5.9449e-01 1.0080e-01
7.9592e-01 5.1504e-02
1.0656e+00 2.6613e-02
1. 4267e+00 1. 3688e-02
1.9100e+00 6.8406e-03
2. 5572e+00 3. 4166e-03
3. 4237e+00 1. 5384e-03
4.5837e+00 6.7240e-04
6.1368e+00 1.3942e-04
8.2161e+00 5.6336e-08
1.1000~e+01 0.0000~e+00

LET spectrum set. 25 values tabulated

Device Upset Cross-Section Tabulation
LET (MeV/mg/cm2) Cross3-Section (cm2/device)

19

T-M (IEV/mq/cI) Cross-section (cm2/device)
1.00409-o1 0.ooooe+0
5.0000.-01 1.00OOe-04
j.OQOOe+0 3.2300e-03
1.40000+00 4.4400e-03
3.00q.e+O0 5.770Qe-03
4. $ +006+oO 74000e-03
t.PQ0*0 0 8.7300e-03
8.?qoQe+0e 1.0000e-02
9.000000 1.12000-02
1.506 0e*41 13100e-02
2. 1000e+1 1.2400e-02
3.00QO*01 1.3000-02
3. 5000*01 1.390e-02
4.20000+01 1.48OOe-02

Sensitive region (microns): X - 39.00 Y - 39.00 Z - 1.00
Number of bits per device - 1024
C~oss sectAon set. 14 values tabulated

Integration complete.
Result - 9.3295e-04 upsets per bit per day
Extrem limit bounds are 6.4874e-04 to 1.3410e-03
Result - 9.5534e-01 upsets per device per day
ExrwW € imit bounds are 6.6431e-01 to 1.3732e+00

20

Appendix E: Source code listings

Ustings of the current version of the source code are included here. All of the
source code Is written in ANSI C. The source code is contained in three files
named SEU CAIC.C, PATHDIST.C, and INPLIST.C. All of the source code is
in the public domain. The subroutines contained in each file are:

SEUCALC.C
main()
integrand()

myfluxO)
lgauss()
dojnt()

PATH DIST. C
pldseto
pldt()
pld()

INPLIST.C
inputist()

21

6 c&C. C Page 1
Uls.y, mazah 16, 1992 10:23 AN

*include <stdio.h>
*Includs <math. h>
/* Routines to do ID integral of single-event upset cross-section

over pethlength distribution and LET spectrum to calculate the
rate of single-event-upsets.

Written by: D.L. Chenette Version 1.3 8 November 1991

Required source code modules: SEUCALC.C INP_LIST.C PATHDIST.C

SEUCALC: this module with main, LET spectrum, and cross section models
IWLIST: input module to read DEVICE and LET SPECTRUM files
PATAIST: module to calculate pathlength distribution of rectangular solid

To cmpile and produce an executable file under VMS, do the following
(make sure all files are in the same directory before you start):

Define the proper link libraries (may be done in the login.ccom):
DEFINE LNK$LIBPARY SYS$LIBRARY: VAXCCURSE. OLB
DZFIr LNK$LIBRARY_1 SYS$LIBRARY:VAXCRTL.OLB

Cmpile all modules individually with the following commands to
generate .OBJ files (unnecessary if .OBJ file exists already):

CC PATK)IST
CC 1_ LIST
CC SEUCALC

When this is done you should have .OBJ files of each of these.
Link all modules to make the executable file with the following:

LINK SZUCALC, INP_LIST, PATHDIST
The link step should produce the executable file SEUCALC.EXE
which you can run with the command RUN SEUCALC

Before RUNning, however, you must DEFINE DEVICE and LET SPECTRUM
input files as well as the SEU CALC output file. Alternatively,
these file names may be used directly if the files are in the
current directory.

The DEVICE and LETSPECTRUM input files are nearly free-format.
In each file special text keys are used to distinguish comments
or other text from the information required by the program.

The DEVICE file describes the integrated circuit part for the
SEU rate calculation. The following information is required:

1. Dimensions of the sensitive cell in microns (X,Y,Z).
The Z dimension is assumed to be depth into the silicon.
The quantity X*Y is the sensitive surface area of a cell.

2. The number of sensitive volmes (N) in the cross-section
table which follows. If the cross-section is tabulated
per bit, forexample, N should be set to 1.

3. A 2-column listing of LET and upset cross-section values.
The units for the LET must be MeV/micron, and the units
for the upset cross-section must be in square centimeters
per device (or per bit, if N is set to 1, see above)

The key for X, Y, Z, and N are the two-character sets X- Y- Z- or

22

SIU3CALC.C Page 2
Monday, March 16, 1992 10:23 AM

N- The first numerical value found after the key on the same line
is interpreted as the value for the required parameter. The keys
and their values may appear on one or more lines. They should
appear in the DEVICE file before the cross-section key text string.

For the cross-section table of the DEVICE file and for the LET
spectrum of the LET SPECTRUM file the key is the 3-characters LET
The first line containing "LET" is assumed to be a comment and is
listed to the output. Subsequent lines to the end of the file are
expected to contain at least 2 numbers (and may contain additional
values or other text). The first 2 numbers on each line are used
and interpreted as the LET and the upset cross-section (for the
DEVICE file) or the LET and the integral flux (per square meter
per second per steradian, for the LETSPECTRUM file). If
only one number is found on a line, that line will be igored as
a comment. The format of the numbers not critical. Fixed-point,
floating point and exponential notations are recognized. The program
lists what it has read to the output file. When using a new input
DEVICE or LET SPECTRUM file this listing should be checked to make
sure that it is being interpreted correctly.

Restrictions: The first entry of the DEVICE file should have a
non-zero LET with a cross-section of zero to start the inegration.
The both files must be monotonic increasing in LET. The device file
must be monotonic increasing in cross-section with increasing LET.
The LET SPECTRUM file (since it is an integral flux) must be
monotonic decreasing in the flux with increasing LET.
Maximum number of entries in upset cross-section is now set to 50.
Maximum number of entries in the LET spectrum is now set to 200.

If you want to specify a step-function upset cross-section, put in
a two line cross-section listing. An example DEVICE file follows:
X= 40 Y=40 Z= 1 Sensitive volume is 40x40xl microns

N- 1024bits LET for step function example for 1K device
1.0 0.0 step function upset cross-section with critical
1.0 0.001 LET threshold = 1 MeV/mg/sqcm and total upset

cross section for the device of 0.001 sqcm

User input: an integer (1, 2, or 3) used to control the convergence
of the integration. A value of 1 requires convergence to 10%, 2
requires convergence to 1%, and 3 requires convergence to 0.1%. In
most cases the upset cross-section is not measured so precisely that
the strictest convergence requirement is necessary a to optimize the
accuracy of the result. Execution is fastest using 1, 3 is pretty
slow on a Mac or PC but is probably not too bad on a mainframe.

*/

/* The parameter INTRP is the number of interpolation steps used between
listed values of the upset cross-section. If faster execution
is desired this may be set to 1. If a finer interpolation of the
listed cross-section is desired, it may be set higher. I use 8.
The upper and lower limits of the upset rate are calculated using
the obvious upper and lower bounds of the upset cross-section. They

23

SU CALC. C Page 3
Monday, Marcoh 16, 1992 10:23 AM

are certainly conservative limits. The mid value is from this
interpolation. */

#define INTJW 8

double Qc; /* critical charge in PICOCOULCM8S */

#define NUMCST 50 /* number of entries in following table */
double xsinp[2] [NUST] ; /* cross-section table as provided */

Mefine NUHSPC 200 /* number of LET entries in table below */
double spectra21 [NUMSPCJ; /* LET spectrum as provided */

double Accuracy - 0.001; /* End the integration when two successive
integrals differ by less than this
amount as a fraction of the value.
Note that the error in the result of the
integral likely will be larger than this */

/* The following constants are used to adjust units in the program */
double funits - 0.0000000864; /* convert from / m2 to /day um2 86400*le-12 *1
double Ault - 1.0e8; /* convert area in square cm to square microns */
double Twult - 0.233; /* convert thickness from microns to mg/cm2 (Si) */
double pCpIeV - 0.0445; /* picoCoulombs per MeV for energy deposit in Si */
double qmult; /* to convert E- to 0-dep. MeV/mg/cm2 to pC/micron.

Defined in main as the product of Tmult * pCpteV */

double xsect[NUMXSTI [2]; I* xsinp data converted to my units */
double spect(NUMPC] (31; /* spectra data converted to my units */
double x, y, z, nbits, Xs, dQc, dXs;
double rnt(INTRP], ont[INTRP];
int nspect, ndevxs;

FILE *po;

main()

int i, J, k, ntrp, index, model;
double sqrto, pldseto, myfluxo;
double imin, lmax, eff, lasteff, lastleff, lastueff;
double umid, lmid, upper, lower, result;
char kar, title(NUMSPC];

qmult - Tmult * pCpMeV; /* define conversion from MeV/mg/cm2 to pC/un */

po - fopen("SEUCALC","w");

printf("\f SEU rate calculator - 1-D integration method");
printf("\n Integral over experimental cross-section data.");
printf("\n Version 1.0 D.L. Chenette 8 November 1991 \n");

k 0;
do(

printf("\n\n Enter convergence precision parameter (1->low, 2->)iedium, 3->high):

24

SIUCALC.C Pago 4
Monday, March 16, 1992 10:23 AN

scanf ("%d",i)
kc +- 1;
) while (k < 4 &&(i<1 I I i>3));

if (kc >- 4)(
printf("\n Input error. Got %d Should be 1 2 or 3");
goto finish;

if i-1 cuay=01
if (i - 1) Accuracy = 0.1;
if (i - 2) Accuracy = 0.01;

if (po !- NULL) {
fprintf(po,"\f SEU rate calculator - 1-D integration method");
fprintf(po,*\n Integral over experimental cross-section data.");
fprintf(po,"\n Version 1.0 D.L. Chenette 8 November 1991 \n");
fprintf(po,"\n Convergence parameter - %d. Integration consistency =gn"

i,Accuracy);

if ((nspect = input -list("LETSPECTRUM", "LET",NUMSPC, spectra[0] ,spectra[l] ,title)) > 1
printf("\n LET spectrum used in this run:");
printf("\n %s,title);
printf("\n LET (MeV/micron) Flux (/m2 s sr)");

if (po !- NULL) {
fprintf(po,"\n LET spectrum used in this run:");
fprintf(po, "\n %s,title);
fprintf(po,"\n LET (1eV/micron) Flux (/m2 s sr)");

for(i=0;i<nspect;i++) (/* convert LET spectrum units *
printf("\n %12.4e %12.4e",spectra[0] [i],spectra~l] (iJ);
if (po !- NULL) {

fprintf(po,"\n %12.4e %12.4e",spectra(0] (i],spectra(l][i]);

/* convert LET (14V/micron) to charge dep (pC/micron) *
spect(i] [0] = spectra[0] (i] * pCpMeV;
spect~iJ (11 spectra~lJ(i];
if (i < nspect-l) spect~iJ [2]

(spect[i+l] [1] - spect[i](l])/(spect~i+l] (0] - spect~il [0]);
/* Note: conversion of flux to per sq micron and day

is done only in printout at end to keep
numbers larger (comparable to 1) */

if ((i > 0) && (spectraCOEi-li > spectra(0](i] 11
spectrafli (i-li < spectra[l]Hi])) {

printf("\n Error in LETSPECTRUM file. Must be monotonic");
goto finish;

printf("\n LET spectrum set. %d values tabulated\n",nspect);
if (p0 !- NULL) {

fprintf(po,"\n LET spectrum set. %d values tabulated\n",nspect);

25

gaU CLC. C Pago 5
Moany, IMazoh 16, 1992 10:23 AM

else (
printf(*\n LET Spectrum not found");
goto finish;
)

if ((input list (-DEVICE", "X-", 0, &x, &x, title) ==-1) &&
(input list ("DEVICE", "Y-", 0, &y, &y, title) - -1) &&
(input list (-DEVICE", "Z=", 0, &z, &z, title) - -1) &
(inputlist("DEVICE","N-",0,&nbits,&~nbits, title) - -1) &&
((ndevxs - inputlist("DEVIE","LET",NUMXST,xsinp[0],xsinp[l],title)) > 0) &&

x > 0.0 && y > 0.0 && z > 0.0 && nbits > 0.0) {
printf("\n Device Upset Cross-Section Tabulation");
printf(*\n %s,title);
printf("\n LET (MeV/mg/an2) Cross-section (cm2/device)");
if (po !- NULL) {

fprintf(po,"\n Device Upset Cross-Section Tabulation");
fprintf(po, "\n %s",title);
fprintf(po,"\n LET (MeV/mg/cm2) Cross-section (cm2/device)");
}

for(i-O;i<ndevxs;i++) (/* convert cross-section data */
printf("\n %12.4e %12.4e",xsinp(0][i],xsinp(l][i]);
if (po !- NULL) {

fprintf(po,"\n %12.4e %12.4e",xsinp[0] [i],xsinp[l](i]);
)

/* convert LET (MeV/mg/cm2) to charge deposit in pC */
xsect[i] (0] = xsinp(0] (i] * qmult * z;

/* cross-section/device to upset efficiency per bit */
/* by dividing by number of bits and area per bit */

xsect[i]] - xsinp(l] [i] / (x * y * nbits / Amult);
/* calculate slopes for linear interpolations later */

if ((i > 0) && (xsinp[0j [i-l] > xsinp(0][i] 11
xsinp[1](i-1] > xsinp[l] i))) (

printf("\n Error in DEVICE data file. Must be monotonic");
goto finish;}

)
printf("\n Sensitive region (microns): X = %.2f Y - %.2f Z = %.2f",x,y,z);
printf("\n Number of bits per device = %.Of",nbits);
printf("\n Cross section set. %d values tabulated\n\n",ndevxs);
if (po !- NULL) {

fprintf(po,O\n Sensitive region (microns): X = %.2f Y = %.2f Z - %.2f",x,y,
fprintf(po,"\n Number of bits per device - %.Of",nbits);
fprintf(po,"\n Cross section set. %d values tabulated\n\n",ndevxs);
}

else {
printf("\n Device description file not found or in error");
printf("\n Sensitive region (microns): X - %.2f Y = %.2f Z - %.2f",x,y,z);
printf("\n Number of bits per device - %.Of",nbits);
printf("\n %d cross-section values found \n\n",ndevxs);
goto finish;
}

26

SIU-CALC. C Page 6
Monday; March 16, 1992 10:23 AN

/* range of pathlength integral is 0 to maximum pathlength in region *
1min - 0. 0;
imax - pldset(x,y,z);

printf(u\n Press return to continue");
scanf("%cm,&kar);

latef 00
lastleff = 0.0;
lasteff = 0.0;

lower - 0.0;
upper - 0.0;
umid - 0.0;
Imid - 0.0;
for(i=0;i<ndevxs;i++) { /* do all parts of cross-section *

Oc = xsect [1) [0);
Xs - xsect~iI (1];
if (i < ndevxs-l)

doc - (xsect~i+l] (0] - xsect~i](0])/((double) INTRP);
dXs = (xsect[i+l)[l] - xsect~i]l]l)/((double) INTRP);

printf(" Part%3d of%3d Qc=%ll.4e Xs=%ll.4e",
i+l,ndevxs,Qc,Xs);

k - ((d~c <= 0.0) 11 (i - ndevxs-l)) ? 1 : INTRP;
for(J=0;J<k;j++) (/* do interpolation steps */

model - doimt (Accuracy, 1mn, imax, rnt+j, ont+j);
Qc += d~c;
Xs +- dXs;

printf C' I=%ll.3e\n",rnt(0]);
upper += rnt(0] * (xsect[i+lJ [1] - lastueff);
lastueff = xsect[i+lJ [1];
lower += rnt(0] * (xsect~i] (1] - lastleff);
lastleff = xsect(i] (1];
imid +- rnt[0] * (xsect(i] (1] - lasteff);
lasteff = xsect~i] (1] + dXs * (k - 1);
if (k > 1)f

for(J=0;J<k;j++) umid += rnt~j] * dXs;
for(J-l;J<c;J++) imid += rnt[J] * dXs;

printf(n\n L=%ll.4e U=%12.4e lmid=%12.4e umid=%12.4e",
lower, upper, imid, iznid);

lower *=funits;

upper *=funits;
uid - (umdd + Imid) * funits / 2;

printf ("\n\n Integration complete.");
printf('\n Result -%12.4e upsets per bit per day",tuid);
printf("\n Extreme limit bounds are%12.4e to%12.4e",lower,upper);
printf("\n Result -%12.4e upsets per device per day",umid*nbits);
printfC'\n Extreme limit bounds are%12.4e to%12.4e",

lower*nbits, upper*nbits);
if (p0 ! NULL)

27

89 CAZLC. C Page 7
Menay, March 16, 1992 10:23 AM

fprintf (po, "\n\n Integration complete.");
f]prifftf(po,"\n Result -%12.4e upsets per bit per day",umid);
fprintf(po,"\n Extreme limit bounds are%12.4e to%12.4e",lower,upper);
fprintf(po,"\n Result -%12.4e upsets per device per day",umid*nbits);
fprintf(po,"\n Extreme limit bounds are%12.4e to%12.4e",

lower*nbits, upper*nbits);
)

finish:
printf("\n End of run. \n\nw);
if (po !- NULL) fclose(po)"
)

double integrand(l) /* this is the function called by twodint() */
double 1;
(
double pldo, myfluxo;
if (1 <- 0.0) return(0.0);
return(pldt(l) * myflux(Qc/1));
)

double myflux(L) /* Calculate flux at LET = L */
double L; /* L in units of pC/micron */
(
int i;
static int oldi - 0;

if (L >- spect(oldi] [0 && L <= spect(oldi+l1 [0]) 1
i - oldi;
J

else {
if (L <- 0.0 11 L >- spect[nspect-l] [0]) return(O.O);
for(i-nspect-2;i>O;i--) if (L > spect(i][0]) break;
)

oldi -i;

return(spect[i(1] + spect[i][2J * (L - spect[i][0])); /* calc flux at L */

double Igauss(a,b) /* do Gaussian integral of integrand from a to b *1
double a,b;
(

int J;
double xr,xm, dx, s;
double integrand 0;
static double x]-{0.0,0.1488743389,0.4333953941,

0.6794095682,0.8650633666,0.97390652);
static double w[l-(0.0,0.2955242247,0.2692667193,

0.2190863625,0.1494513491,0.06667134);

m-O. 5* (b+a);
xr-0. 5* (b-a);
S-o;

28

SIU CALC. C Page 0
Monday, March 16, 1992 10:23 AN

for (J-l;j<-5;j++)
dx-xr*x[J I;
s +- wtjJ* (integrand(xam+dx)+integrand(xm-dx));

return(s *- xr);

int do int(Acc,mn,inx,res,old)
double Acc, inn, mx, *res, *old;

double dxc, answex, panswer, ,anin, ,anax;
double min, max, eps, ddx, trint, ntrint;
double rpart, opart, integrando, igausso;
mnt i, section, rltr;

ntr - 20:
ntrint - (double) ntr;

printf("\n Integrate from %12.4e to %12.4e\nm,mn,mx);
if (po !- NULL)I

fprintf(po,"\n Integrate from %12.4e to %12.4e\n",mn,mx);

dx -(nix - inn) / ntrint;
for (i-0; ic-ntr; i++)f

xxnin - xmax;
xauax - inn + dx * ((double) i);
dclx - eps:
eps - integrand(xmax):
i f U(i 0) (

trint =0.0;

else f
trint +-dx * (ddx + eps) / 2.0;

printf(" x =%12.4e f =%12.4e\n",xmax,eps):
if (po ! - NULL) (

fprintf(po," x -%12.4e f -%12.4e\n",xnax,eps);

printf(" %d point trapedoid integral -%12.4e\n",ntr,trint);
if (po ! -NULL) (

fprintf(po," %d point trapedoid integral -%12.4e\n",ntr,trint);

rpart - 0.0;
opart. - 0. 0:
answer - 0.0;
dx- (Ox - inn) / ntrint:

for (section-0: sectionCntr; section++)

29

XG, 2992 20:23 laU

mm n an . d * ((double) SOctiop):
W -v 4~n + d;W

cbc = (w~ - mini) /((double))
pspe"r = answer;
anw - q. 0:

-mn. min;
t'chile(im:Ln < max)

xm -w min + dk;
J:& (iimw > max) xmmx - max;,
anar -k- Igalisa(xmin, xwa);

xmn- 2xmx;

if ((i > 1 && answer !- 0.0) 11 (1 > 2)){

if (answer !0. 0) eps - (answer - panswer) /answrer;
else, 40S - -1. 0:

pxjipt9(N %5d %X2.40 %12.40 %k2.4\.,Renwer,answKr,ePS);
14S (po!- NULL)4

fprintf (po,w %5d %12.4e %12.4.e %12.4e\n",
i .panswer, answer ,eps):

ift (fabs~eps) < Acc 11 fabs(eps*answer/trint) < Acc/l0.0) break;

rpaxt ~-answex;
opart += Vapswier;

*old - oat
*res - rpart;
return (1/2) ;

30

IP-LZST. C Pago 1
Monday, March 16, 1992 10:22 AN

/* INPUTLIST.C Version 1.0

Purpose: Read any listings
Coded by D.L. Chenette, 8 November 1991

Change log:

#include <stdio. h>
#include <stdlib. h>
#include <math.h>

#define N~AXLLEN 250

int input-list (ifname, key,maxn, coll, col2,title)
char *jfname, *key, *title;
mnt maxn;
double *coll, *col2;
I
char s(NAXLLEN], *c, *d;
i t k;:
double *cl, *c2;
FILE *fp;

k -0;

if (ifname 66 (fp - fopen(ifname,"r")) !-NULL){

printf("\n Reading data from file: %sm,ifname):

if (*key)(
while (fgets (s,NAXLLEN, fp)){

C - a
d -key;
wrhile(*c && *c ! *d) c++;
while(*d G& *c (*c *d))

c + 1;
d +-1:

if (maxn - 0 *d - 1\01)
vhile(*c &~(*c < 1-1 11 *c > '91)) c++;
if (*c) *coll - atof (c):
return (-1);

if (*d - I\01){
c -title;
d 9;
kc 80:
while((*c++ -*d++) ~&--kc);

kc - 0;
goto begin;

31

M1W s?1 . C Wse" 2
0,%N&3, Ubtab 16, 1992 10:22 AM

yrintf (a Iput file ts did not contain key string %s,ifninme, key);

begin:
cl - coil:,
c2 - ooi12;
whille (fgsts (*,3m2UEW",f4))I

c - 8;
vhule(*c (*c < S *C > '9')) c++;
if (*c)

*c1 atof(c);
while (*c 88 (*c >- 9-1 11 *c - 1+1)) c++;
whule(*c A& (*c < 1-1 11 *c > '9')) c++;
if (*c)f

*C2 -Aktof (c);
ci 4- 1
c2 *-1:
If (++k - Suxn) goto done

done:
if (fp -IWLL)

printf (\n input file named ts cannot be opened for reading3, if name):
else fcloae(fp);

return (k):

32

PATHDIST. C Page 1
Mnday, March 16, 1992 10:32 AM

include <stdio.h>
#include <stdlib. h>
*include <math.h>

double dist[1002]: /* pathlength distribution calculator method taken from */
double smax; /* Pickel & Blandford, IEEE Trans.Nuc.Sci.NS-27, Apr.1980 */

/* for right rectangular prism geometry */
/* coded by D. L. Chenette 25 June 1987 */

double pldset(zzl, zz2, zz3) /* set up pathlength distribution table */
double zzl, zz2, zz3; /* PLD is tabulated every 0.1% of maximum */
I /* pathlength (1001 points including max) */
int i; /* returns maximum pathlength in volume */
double pld(), sqrto;

smax - sqrt(zzl * zzl + zz2 * zz2 + zz3 * zz3);
for (i-O;i<1001;i++) {

dist(iI -pld((double) smax*i/1000.0, zzl, zz2, zz3);
I
dist(1001] - 0.0;
printf("\n Pathlength distribution set for right rectangular prism.");
printf("\n Dimensions of sensitive region: x = %g y = %g z = %g",

zzl, zz2, zz3) ;
printf("\n Maximum pathlength through region = %g \n\n",smax);
return(smax);
)

double pldt(s) /* return tabulated value of pathlength distribution */
double s; /* for pathlength s through right rectangular prism */

/* must have called pldset(x,y,z) first to setup table */
int i;
double x;
if (s < 0.0 II s > smax) return(0.0):
x - 1000.0 * s / smax;
i - (int) x;
return(dist(i] + (dist[i+l] - distfi]) * (x- M;
}

double pld(s,zzl,zz2,zz3) /* return pathlength distribution for rect solid */
double s,zzl,zz2,zz3; /* s = pathlength, zzl, zz2, zz3 are dimensions */
{ /* pld is normalized s.t. integral over all s is */
int i; /* equal to G-factor - 4*pi* (average proj. area) */
double atano,acoso,sqrto,powo; /* G-f - 2*pi*(zzl*zz2+zzl*zz3+zz2*zz3) */
double x, y, z, r, r2, g, qsz, fs;
double x2, y2, z2, xy2, xz2, xy, xz, s2, S3, ssz, ssz2;

fs - 0.0:
if (zzl <- 0.0 II zz2 <- 0.0 II zz3 <- 0.0 II s < 0.0) return(fs);
if (s > sqrt(zzl*zzl + zz2*zz2 + zz3*zz3)) return(fs);

S2 - a * a;
3 - a * s2;
for(i-O:i<6;i++)

if (i - 0) 4

33

IfmISzT. C Page 2
Momfty, Match 16, 1992 10: 32 AM

x - Zzl;
y - zz2:
z - zz3;

)
else if (i - 1) (

x = zzl:
y - zz3;
z - zz2;

I
else if (1 2) (

x - zz2;
y - zzl;
z - zz3;

)
else if (i - 3) {

x - zz2;
y - zz3;
z - zzl;

}
else if (i - 4) {

x - zz3;
y - zzl;
z - zz2;

)
else if (i 5) {

x - zz3;
y - zz2;
z - zzl;

}
x2 - x *x;
y2- y *y;
z2 - z *z;
r2 = x2 + y2 + z2;
r = sqrt(r2);
xz2 = x2 + z2;
xz = sqrt(xz2);
xy2 = x2 + y2;
xy - sqrt(xy2);
if (s > z) {

ssz2 = s2 - z2;
ssz - sqrt(ssz2);

)
else (

ssz2 - 0.0;
SSZ 0.0;

if (s2 > xz2) qsz - sqrt(s2 - xz2);
Is qs: - 0.0;
if (S < Z) (

g- y2/(xz2 * r) + 2.0 * (r - xz)/(xz * r) + r/xy2 - xz/x2
+ y2 * z/(x2 * xy2) - 1.125 * y2 * s/(r2 * xz2);

g *- 2.0 * x2 / 3.0;
)

34

VATEDIST. C Page 3
Monday, March 16, 1992 10:32 AN

else if (s < xz)
g y2/ (xz2 * r) + 2. 0 * (r -xz) /(xz * r) + r/xy2 - xz/x2

- 1. 125 * Y2* s/ (r2 *xz2)

-ssz ssz2 * (x + (y2 -x2)/xy) / (s3*x2)
* 3. *z2 * y2 * (1. -z2/(3. * s2))/(2. *s * x2 *xy2)
* 1.125 * ssz2 * ssz2 *y2 / (x2 * s3 * xy2);

g ~-2.0 * x2 / 3.0;
g +-x *y * z2 * atan(y/x) / s3

z 2 * ssz * ((y2 - x2)/xy + x)/s3 + z2*ssz2*y21(2.*s3*xy2);

else if (s < r){
g -y2/(xz2 *r) - y * qsz/(s * xz2) - 2./r + r/xy2

- s/ssz2 + 2./s - 1.125*s*(xy2/r2 - ssz2/s2)/z2
- ssz * ssz2 * ((y2-x2)/xy - (y*qsz - x2)/ssz)I(s3*x2)
+(3./(2.*x2))*(0.75*s - z2/(2.*s) + 5.*z2*z2/(12.*s3))
*(y2/xy2 - (s2 - xz2)/ssz2);

g *'2.0 * x2 / 3.0;
g em(x*y*z2/(s*s2))*(atan(y/x) - acos(x/ssz))

- (z2/s3)*ssz*((y2-x2)/xy - (y*qsz - x2)/ssz)
+ (z2/(2.*s3)) * ssz2 * (y2/xy2 - (s2-xz2)/ssz2);

else g - 0.0;
fs +- g

return(B.0 * f)

35

